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The turbulent Prandtl number has been calculated in the two-loop approximation of the« expansion of the
stochastic theory of turbulence. The strikingly small value obtained for the two-loop correction explains the
good agreement of the earlier one-loop result with the experiment. This situation is drastically different from
other available nontrivial two-loop results, which exhibit corrections of the magnitude of the one-loop term.
The reason is traced to the mutual cancellation of additional divergences appearing in two dimensions, which
have had a major effect on the results of previous calculations of other quantities.
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I. INTRODUCTION

The method of renormalization groupsRGd in the theory
of developed turbulence is currently the most developed
technical means allowing for reorganization of the straight-
forward perturbation theory, whose huge expansion param-
eter at large Reynolds numbers renders it practically useless.
At the same time the physical value of the artificial expan-
sion parameter« introduced in the RG approach is not small
either. For some important physical quantities, such as the
critical dimension of the velocity and effective viscosity, it is
possible to prove with the use of of Galilei invariance of the
theory that the corresponding series in« terminate at the
linear terms. Therefore, for such quantities the RG approach
yields exact answers coinciding with the prediction of the
phenomenological theory of Kolmogorov. For other interest-
ing quantities, such as the Kolmogorov constant, skewness
factor, turbulent Prandtl number and the like, the series in«,
however, do not terminate. In this context, it has been often
suggested that with the aid of the« expansions, it is not
possible to obtain a sufficiently good estimate of numerical
values of these quantities, although, until recently, there were
no calculations extending beyond the first order of the per-
turbation theorysone-loop approximationd. The two-loop
calculation of the Kolmogorov constant and the skewness
factor in the inertial range carried out in Ref.f1g confirmed
this pessimistic point of view on the whole: the two-loop
contribution turned out to be practically equal to the one-
loop contribution, although the trend of change of the quan-
tities calculated was correct i.e., towards the experimental
value from the one-loop result.

In Ref. f1g calculations were carried out for space dimen-
sions d different from d=3 as well. It turned out that the
relative magnitude of the two-loop contribution decreases
with the growth ofd, and in the limitd→` is of the order of
10% only. At the same time, in the limitd→2 this contribu-
tion grows without limit. Such a behavior of the coefficients
of the« expansion may be related to that their singularities as
functionsd lie in the regiondø2. The nearest singularity at
d=2 is connected with the divergence of some graphs in the
limit d→2, which leads to the appearance of poles ind−2 in

the coefficients of the« expansion, and it is just these graphs
that turn out to be responsible for the large value of the
two-loop contribution atd=3. This feature gave rise to the
hope that summation of these singularities may lead to quan-
titative improvement of the results of the« expansion in the
real dimensiond=3. Such a summation was carried out in
the framework of the RG method with the aid of the account
of the additional UV renormalization of the theory in the
vicinity of d=2 f2g. In the resulting “improved« expansion,”
the low-order terms are calculated in the usual way atd=3,
while the high-order terms are approximately summed with
the account of their leading singularities ind−2 sone-loop
approximationd, then next-to-leading singularitiesstwo-loop
approximationd, etc. Calculation of the Kolmogorov constant
and skewness factor according to this program has demon-
strated an essential decrease of the relative impact of the
two-loop contribution and led to a fairly good agreement
with the experimentf2g.

In the present paper we shall analyze to what extent the
singularities of the« expansion show for another important
characteristic quantity of turbulent systems, the turbulent
Prandtl number. It was calculated in the framework of the
RG and the« expansion in Refs.f3,4g sstrictly speaking, in
the earliest Ref.f3g themagneticPrandtl number was evalu-
atedd with rather good agreement with experimentf5–7g. We
have carried out a two-loop calculation of the Prandtl num-
ber in order to check whether this agreement is partially co-
incidental.

Let us recall that the Prandtl number is the dimensionless
ratio of the coefficient of kinematic viscosityn0 to the coef-
ficient of thermal diffusivityk0. sIn the formally identical
problem of turbulent diffusion, the ratio of the coefficients of
kinematic viscosity and diffusion is called Schmidt numberd.
For systems with strongly developed turbulence the process
of homogenization of the temperature is strongly accelerated,
which is reflected in the value of the effective or turbulent
coefficient of thermal diffusivity. The ratio of the coefficient
of turbulent viscosity and the coefficient of turbulent thermal
diffusivity is the turbulent Prandtl number. Contrary to its
molecular analog, the turbulent Prandtl number is universal,
i.e., does not depend on individual properties of the fluid. For
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the accurate determination of the turbulent Prandtl number a
set of conditions is required, especially when calculations are
carried out in the two-loop approximation. Therefore, apart
from the formulation of the stochastic problem, we shall pay
proper attention to this problem as well.

The present paper is organized as follows. In Sec. II we
review the main features of the description of passive advec-
tion of a scalar quantity in the stochastic theory of turbulence
with special emphasis on the careful definition of the turbu-
lent Prandtl number within the model considered. Section III
is devoted to the analysis of renormalization and
renormalization-group equations of the model. In Sec. IV
details of the two-loop calculation are presented. Section V
contains analysis of the results and concluding remarks.

II. DESCRIPTION OF THE MODEL

Turbulent mixing of a passive scalar quantity is described
by the equation

]tc + sw j] jdc = k0Dc + f . s1d

The fieldcsx ,td in Eq. s1d may have the meaning of both the
nonuniform temperaturesk0 being the coefficient of thermal
diffusivityd and concentration of the particles of the admix-
ture sin this case,k0 is replaced by the coefficient of diffu-
siond. The fieldfsx ,td is the source of the passive scalar field.
In the stochastic model of turbulence the field of turbulent
eddies of the velocity of the incompressible fluidwisx ,td sat-
isfies the Navier-Stokes equation with a random force:

]twi + sw j] jdwi = n0Dwi − ]iP + Fi , s2d

wherePst ,xd andFist ,xd are, respectively, the pressure and
the transverse external random force per unit mass. ForF, a
Gaussian distribution with zero mean and the correlation
function

kFist,xdFjst8,x8dl = dst − t8ds2pd−dE dkPijskddFskd

3expfiksx − x8dg s3d

is assumed. Here,Pijskd=di j −kikj /k
2 is the transverse pro-

jection operator,dFskd a function ofk;uk u and parameters of
the model, andd the dimension of the coordinate spacex.

The stochastic problems1d–s3d is equivalent to the
quantum-field model with the doubled number of fieldsf
;hw ,c ,w8 ,c8j and the action

SsFd = w8DFw8/2 + w8f− ]tw + n0Dw − sw]dwg

+ c8f− ]tc + k0Dc − sw]dc + fg, s4d

in which DF is the correlation function of the random force
s3d and the necessary integrations overht ,xj and summations
over vector indices are implied. In models1d–s4d only corre-
lation functions of the admixture field of the form

kcsx1,t1d,csx2,t2d ¯ csxn,tndc8sx18,t18d,c8sx28,t28d ¯ c8sxn8,tn8dl,

with the meaning of multiple response functions are nonva-
nishing. The simplest of them is determined by the following

variational derivative with respect to the sourcef in Eq. s1d:

Gsx − x8,t − t8d ; ukcsx,tdc8sx8,t8dlu f=0 = Udkcsx,tdl
dfsx8,t8d

U
f=0

.

s5d

The nonrandom source fieldf of the passive scalar has been
introduced in actions4d solely to recall relations5d and its
generalizations, and will therefore further be omitted.

Model s4d gives rise to the standard diagrammatic
technique with the following nonvanishing bare propagators
st; t1− t2d:

kwst1dwst2dl0 =
dFskd
2n0k

2 exps− n0k
2utud, s6d

kwst1dw8st2dl0 = ustdexps− n0k
2td, s7d

kcst1dc8st2dl0 = ustdexps− k0k
2td, s8d

in the st ,kd representation. The common factorPijskd has
been omitted in expressionss6d ands7d for simplicity. Inter-
action in actions4d corresponds to the three-point vertices
−w8sw]dw=wi8Vijsw jws/2 with the vertex factorVijs=iskjdis

+ksdi jd, and −c8sw]dc=ikjc8w jc, wherek is the wave vector
of fields w8 andc8.

Turbulent processes lead to significantly faster attenuation
in time of the response functionskww8l and kcc8l than in
relationss7d and s8d due to the effective replacement of the
molecular coefficients of viscosity and thermal diffusivity by
their turbulent analogs. At the same time, however, the
simple exponential time dependence is changed as wellsand
in a different manner forkww8l and kcc8ld. Therefore, it is
necessary to choose a definite way of fixing the ratio of the
turbulent transport coefficients; i.e., the Prandtl numbersor
Schmidt numberd. Henceforth, we shall use the following
definition. Consider the Dyson equations for the response
functions in the wave-vector-frequency representation:

Gww8
−1 sk,vd ; Gww8sk,vd = − iv + n0k

2 − Sw8wsk,vd, s9d

Gcc8
−1 sk,vd ; Gcc8sk,vd = − iv + k0k

2 − Sc8csk,vd,

s10d

where S are the corresponding self-energy operators, and
introduce the inverse effective Prandtl numberuef f by the
relation

uef f ;
Gcc8sk,v = 0d

Gww8sk,v = 0d
. s11d

Further, we shall be interested in the inertial rangeL−1!k
!L shere,L is the external scale of turbulence andL−1 the
characteristic length of the dissipating eddiesd in which the
quantityuef f is independent of the wave numberk. The bare
value swithout turbulenced uef f=u0;k0/n0.
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III. RENORMALIZATION OF THE MODEL
AND THE RG REPRESENTATION

The self-energy operatorsSw8,wsk,vd and Sc8csk,vd ap-
pearing in Eqs.s9d and s10d may be found in models4d in
perturbation theory. However, the expansion parameter turns
out to be very large for developed turbulencesfor LL@1d.
The renormalization-group method allows one to carry out a
resummation in the straightforward perturbation theory. To
apply it, it is necessary to use in relations3d “the pumping
function” dFskd of a special form

dFskd = D0k
4−d−2«. s12d

In the infrared region, the power functions12d is assumed to
be cut off at wave numberskøm;L−1. The quantity«.0
in Eq. s12d is the formal small expansion parameter in the
RG approach with the value«=2 corresponding to the physi-
cal model.

The usual perturbation theory is a series in powers of the
charge g0;D0/n0

3 dimensionless at«=0 slogarithmic
theoryd. At «→0, ultraviolet divergences are brought about
in the graphs of the perturbation theory which show in the
form of poles in«. Due to Galilei invariance of the model,
divergences atd.2 are present only in the one-irreducible
functions kww8l and kcc8l and are of the formw8Dw and
c8Dc. At d=2 the one-irreducible functionkw8w8l also di-
verges. Ford.2, the renormalized action may be written as

SRsFd =
1

2
w8DFw8 + w8f− ]tw + nZnDw − sw]dwg

+ c8f− ]tc + unZkDc − sw]dcg.

We obtain from actions4d, by the multiplicative renormaliza-
tion of the parameters of the model,

n0 = nZn, g0 = gm2«Zg, u0 = uZu, Zu = ZkZn
−1, Zg = Zn

−3

s13d

with two independent renormalization constantsZn and Zk.
The quantitiesn, u, andg in Eq. s13d are the renormalized
analogs of the coefficient of viscosity, the inverse Prandtl
sSchmidtd number and the coupling constantsthe chargeg
being dimensionlessd. The renormalization massm is an ar-
bitrary parameter of the renormalized theory, and the pump-
ing function dFskd fEq. s12dg determining the correlation
function of the random forceDF fEq. s3dg is assumed to be
expressed in terms of the renormalized parameters

dFskd = g0n0
3k4−d−2« = gm2«n3k4−d−2«.

The dissipative wave numberL is determined byg0 accord-
ing to the relationL=g0

1/2«. It may be also estimated by the
quantitym. Thus, the inertial range we are interested in cor-
responds to the conditions;k/m!1.

In the scheme of minimal subtractionssMSd used in the
following, the renormalization constants have the form of the
Laurent expansion 1+poles in«

Z = 1 +o
k=1

`

aksg,ud«−k = 1 + o
n=1

`

gno
k=1

n

anksud«−k. s14d

For Zn in Ref. f8g the following expression was obtained:

Zn = 1 +
a11

sndg

«
+ Osg2d, a11

snd = −
sd − 1dS̄d

8sd + 2d
, S̄d ;

Sd

s2pdd ,

s15d

where Sd=2pd/2/Gsd/2d is the area of thed-dimensional
sphere of unit radius.

The correlation functions of the renormalized theory do
not contain poles in«. This feature, however, does not solve
the problem of finding the infrared asymptoticss;k/m→0,
because the corresponding perturbation theory is a series in
the parameters−2« growing without limit in the region we are
interested in. The problem is solved by passing to the RG
representation. To use it for the response functionss9d and
s10d, rewrite them in the renormalized variables in the form

Gww8sk,v = 0d = nk2Rwss,gd,

Gcc8sk,v = 0d = unk2Rcss,g,ud, s16d

where the dimensionless functionsRw andRc of dimension-
less argumentss, g, andu are given by the expressions

Rwss,gd = Zn −
Sw8wsk,v = 0d

nk2 ,

Rcss,g,ud = Zk −
Sc8csk,v = 0d

unk2 . s17d

The RG representation for functionss16d is determined by
the relations

Gww8sk,v = 0d = n̄k2Rwss= 1,ḡd,

Gcc8sk,v = 0d = ūn̄k2Rcss= 1,ḡ,ūd, s18d

whereḡ= ḡss,gd, n̄= n̄ss,g,nd, andū= ūss,g,ud are invariant
variables satisfying RG equations of the form

f− s]s + bg]g + bu]u − gnn]ngbss,g,ud = 0,

and normalized by the conditionsḡs1,gd=g, n̄s1,g,nd=n,
and ūs1,g,ud=u. The RG functionsb andg are defined by
the renormalization constants according to the relations

bgsgd ; um]mu0g = gs− 2« + 3gnd, busg,ud ; um]mu0u

= usgk − gnd,

gnsgd ; um]mu0 ln Zn, gksg,ud ; um]mu0 ln Zk, s19d

where um]mu0 denotes the operatorm]m acting at fixed bare
parametersg0, n0, andu0. The last equalities for theb func-
tions in Eq.s19d are a consequence of the connections be-
tween the renormalization constants in Eq.s13d.

As shown in the one-loop approximation in Refs.f4,8,9g,
the invariant chargesḡss,gd and ūss,g,ud in the limit s→0
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tend to the infrared-stable fixed point:ḡss,gd→g* =Os«d,
ūss,g,ud→u* =Os«0d, and the invariant viscosity has the
powerlike asymptotic behavior

n̄ = SD0k
−2«

ḡ
D1/3

→ SD0k
−2«

g*
D1/3

.

Thus, the expression for the effective inverse Prandtl number
fEq. s11dg in the inertial range predicted by the RG represen-
tation with the account of relationss16d and s18d is

uef f = u*
Rcss= 1,g* ,u*d

Rwss= 1,g*d
. s20d

The quantityuef f defined by Eq.s11d is universal: the result
of its calculation in the inertial range with the aid of relation
s20d does not depend on the renormalization scheme. How-
ever, different factors on the right-hand side of Eq.s20d do
not share this property separately. In particular, in the MS
scheme used by us, the quantitiesRc and Rw are different
from 1; therefore the invariant chargeu* does not coincide
with the effective inverse Prandtl numberuef f. At the lowest
order of perturbation theory, however, the corresponding
valueu*

s0d is independent of the renormalization scheme, be-
cause in this approximationRc

s0d=Rw
s0d=1 anduef f

s0d =u*
s0d. This

feature explains coincidence of valuesu*
s0d calculated within

the RG approach in different renormalization schemes
f4,9,10g.

IV. TWO-LOOP CALCULATION
OF THE PRANDTL NUMBER

The expansion of the functionsRw and Rc fEq. s17dg in
the coupling constantg is of the form

Rw = 1 +gFa11
snd

«
− Aws−2«G + Osg2d,

Rc = 1 +gFa11
skdsud

«
− Acsuds−2«G + Osg2d. s21d

Here, the quantitiesAw and Ac are determined by the one-
loop contribution toSw8w andSc8c, whereas the coefficients
a11

snd and a11
skd of representations14d of the renormalization

constantsZn and Zk are found from the condition of UV
finiteness of expressionss21d. Substituting relationss21d in
Eq. s20d, we obtain

uef f = u*h1 + faw − acsu*dgg* + Osg*
2dj, s22d

aw ; Aw −
a11

snd

«
, ac ; Acsu*d −

a11
skdsu*d

«
. s23d

Bearing in mind thatg* =Os«d, we see that to finduef f at the
leading order of the« expansion, it is enough to know the
chargeu* in the one-loop approximation. At the second or-
der, apart from the more accurate values ofu* and g* , it is
necessary to calculate the coefficientsaw and acsu*d of the
expansion of the scaling functionss17d ands21d at the lead-
ing order in« as well.

The location of the fixed pointsg* , u*d is determined by
the conditionsbgsg*d=busg* ,u*d=0. The nontrivial fixed
point with g* Þ0 is infrared stablef4g, and from Eq.s19d, the
relations

gnsg*d =
2«

3
, s24d

gksg* ,u*d =
2«

3
s25d

follow at this fixed point.
The UV finiteness of the RG functionsgsg,ud from Eq.

s19d allows us to express them in terms of the coefficient of
the first-order pole in« in expressions14d for the renormal-
ization constants:

g = sbg]g + bu]udln Z = − 2g]ga1. s26d

The renormalization constantZn at the second order of per-
turbation theory and the corresponding expression forgn

were obtained in Ref.f1g. In particular, the two-loop contri-
bution a21

sndg2/« in Zn determining the functiongn is

a21
snd =

3sd − 1d2S̄d
2l

128sd + 2d2 , S̄d ;
Sd

s2pdd , s27d

from which for g* fEqs.s26d and s24dg, the result is

g*S̄d =
8sd + 2d«
3sd − 1d

s1 + l«d + Os«3d, s28d

where

l . − 1.101, d = 3;

l = −
2

3sd − 2d
+ c + Osd − 2d, d → 2. s29d

From previous analyses, the renormalization constantZk is
known in the one-loop approximation onlyf4g:

Zk = 1 +
a11

skdg

«
+ S C

«2 +
B

«
DsgS̄dd2 + Osg3d,

a11
skd = −

sd − 1dS̄d

4dus1 + ud
. s30d

Here, the notationCsud;a22
skdsudS̄d

−2 andBsud;a21
skdsudS̄d

−2 for
the coefficients ofg2 in expansions14d have been introduced
for brevity. Their calculation is presented belowfit should be
noted that, like the one-loop factora11

skd, the two-loop coeffi-
cients of the poles in« in representations30d are nonpolyno-
mial functions ofug. According to Eq.s26d, the RG function
gk corresponding to Eq.s30d is

gk =
sd − 1dgS̄d

2dus1 + ud
− 4BsgS̄dd2 + Osg3d.

An iterative solution of Eq.s25d with respect tou taking into
account relations28d yields
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u* = u*
s0d + u*

s1d« + Os«2d, u*
s0df1 + u*

s0dg =
2sd + 2d

d
,

s31d

u*
s1d =

2sd + 2d
df1 + 2u*

s0dg
Fl −

128sd + 2d2

3sd − 1d2 Bsu*
s0ddG . s32d

Substituting relationss31d and s32d in Eq. s22d and taking
into account Eq.s28d we obtain

uef f = u*
s0dX1 + «H 1 + u*

s0d

1 + 2u*
s0dFl −

128sd + 2d2

3sd − 1d2 Bsu*
s0ddG

+
8sd + 2d

3sd − 1dS̄d

saw − acdJC + Os«2d. s33d

We now turn to the calculation of the constantsB, ac

and aw which determine the Prandtl number. In the one-
loop approximation the quantitiesSw8w and Sc8c are
represented by the graphs depicted in Figs. 1 and 2,
respectively. In these graphs, the lines correspond to
propagatorss6d, s7d, and s8d with the convention that
ends with slashes corresponds to arguments of the fields
w8 andc8, plain ends ofw andc. Vertices in Figs. 1 and 2
correspond to the factorsVijs=iskjdis+ksdi jd and ikj,
respectively. Upon contraction of indices, integration
over time, and introduction of dimensionless wave vector
sin units of the external wave vectorpd in the integrals we
obtain

Aw =
1

2sd − 1d E dk

s2pdd

k2−d−2«s1 − j2df2k3j − sd − 3dk2 − 2ksd − 1dj − sd − 1dg
s2k2 + 2kj + 1dsk2 + 2kj + 1d

, s34d

Acsud = −
1

2u
E dk

s2pdd

k2−d−2«s1 − j2d
s1 + udk2 + 2ukj + u

, j ;
kp

skpd
.

s35d

The integralss34d and s35d are UV divergent in the limit«
→0, the residue at the pole is readily found by selecting the
asymptotic atk→` contributions to the integrands and dis-
carding the inessential region of integrationkø1. Thus, for
the coefficientsaw andac together with the renormalization
constantsZn andZk chosen to cancel divergences in expres-
sionss23d, we find

a11
snd

«
=

1

4sd − 1ds2pddE
1

` dk

k1+2« E dk̂s1 − j2d

3s2kj − d + 3 − 6j2d,

a11
skdsud

«
=

− 1

2us1 + uds2pddE
1

` dk

k1+2« E dk̂s1 − j2d, k̂ ;
k

k
.

Replacing the integral over directions of the unit vectork̂ by

the average over its directionsedk̂¯ =Sdk¯l and taking
into account that

kj2nl =
s2n − 1d!!

dsd + 2d ¯ sd + 2n − 2d
, kj2n+1l = 0, s36d

we arrive at results15d for a11
snd and s30d for a11

skd. In view of
the preceding argumentation, the coefficientsaw and ac in
Eq. s23d at the leading order in« may be written as

aw =
1

4sd − 1ds2pddE
0

`

dkE dk̂s1 − j2d

3H2kf2k3j − sd − 3dk2 − 2ksd − 1dj − sd − 1dg
s2k2 + 2kj + 1dsk2 + 2kj + 1d

−
usk − 1ds2kj − d + 3 − 6j2d

k
J , s37d

ac =
− 1

2us2pddE
0

`

dkE dk̂s1 − j2d

3F k

s1 + udk2 + 2ukj + u
−

usk − 1d
ks1 + udG . s38d

FIG. 1. The one-loop self-energy graph forSw8w. The lines cor-
respond to propagatorss6d ands7d. Slashes denote the end carrying
arguments of the fieldw8; plain end carries the arguments of thew
field. Vertices correspond to the factorVijs=iskjdis+ksdi j d.

FIG. 2. The one-loop self-energy graph forSc8c. The lines cor-
respond to propagatorss6d ands8d. Slashes denote the end carrying
arguments of the fieldc8; plain end carries the arguments of the
field w or c. Vertices correspond to the factorVijs=ikj.
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At d=3 from relationss37d and s38d, we obtain

aw =
S̄3

8
E

0

`

dkE
−1

1

djs1 − j2dH 2kfk3j − 2kj − 1g
s2k2 + 2kj + 1dsk2 + 2kj + 1d

− usk − 1dSj −
3j2

k
DJ , s39d

ac =
− S̄3

4u
E

0

`

dkE
−1

1

djs1 − j2dF k

s1 + udk2 + 2ukj + u

−
usk − 1d
ks1 + udG, d = 3, S̄3 =

1

2p2 , s40d

Numerical evaluation of integralss39d and s40d with u=u*
s0d

from Eq. s31d yields

aw = − 0.047718S̄3, ac = − 0.04139S̄3. s41d

It is convenient to find the two-loop contributions to the
renormalization constantZk from the condition that the quan-
tity Rc from Eq.s17d is UV finite in the limit k→0. In terms
of the reduced quantity

S ; lim
k→0

Sc8,csv = 0,kd

unk2 , s42d

this condition may be cast in the form

Zks«d − Ss«d = Os«0d. s43d

The limit k→0 in expressions42d does exist, provided the IR
regularization of the graphs has been taken care of. In the
MS scheme renormalization constants do not depend on the
method of such regularization. With our choice of the pump-
ing function s12d it is accomplished by the cutoff of the
propagatorkwwl0 s6d at k,m.

Let us choose further the wave vector of integration such
that in the lineskwwl0 it flows alonesfor the graphsSc8,c

such a choice is always possibled. Integration over all the
wave numbers will then be carried out within the limits from
m to `.

The one-loop contribution toS is determined by the graph
of Fig. 2 as

Ss1d = −
gm2«

2usZn + uZkdZn
E dk

s2pdd

s1 − j2dusk − md
kd+2«

= −
gm2«

2usZn + uZkdZns2pddE
m

` dk

kd+2« E dk̂s1 − j2d

= −
gS̄dm2«

2usZn + uZkdZn
E

m

` dk

kd+2« ks1 − j2dl,

which, together with relationss15d, s30d, ands36d yields

Ss1d = −
gS̄dsd − 1dt−2«

4«usZn + uZkdZnd

= −
gS̄dsd − 1dt−2«

4«us1 + udd

3H1 − fua11
skd + s2 + uda11

sndg
gS̄d

«s1 + ud
J + Osg3d, s44d

wheret;m/m. Extracting the pole contributions in« from
expressionss44d we obtain

Ss1d = −
gS̄dsd − 1d

4«us1 + udd
H1 − fua11

skd + s2 + uda11
sndg

3
gS̄d

s1 + ud
S1

«
− 2 ln tDJ + Os«0d. s45d

Substituting relations45d in Eq. s43d and requiring cancela-
tion of pole contributions in the linear ing approximation,
we return to expressions30d for a11

skd. The terms of orderg2

are required for the calculation of the renormalization con-
stant in the two-loop approximation.

The two-loop contributionSs2d to the self-energy operator
Sc8c is determined by the sum of the graphs depicted in Fig.
3 fnormalization according to Eq.s42d is impliedg. When
substituting propagatorss6d–s8d—expressed in terms of the
renormalized variables—in the graphs of Fig. 3 it is possible
to put Zn=Zk=1 with the necessary accuracy. Contracting
indices and integrating over time, we obtain

Sn =
sgS̄dd2m4«

192uv2 E
m

` dk

k1+2«E
m

` dq

q1+2«E
−1

1

dj

3
s1 − j2dJn

fvsk2 + q2d + ukqjg
, v ;

1 + u

2
, n = 1,2,

s46d

where

FIG. 3. The two-loop self-energy graphs forSc8c. The lines
correspond to propagatorss6d, s7d, ands8d. Slashes denote the end
carrying arguments of the fieldw8 or c8; plain end carries the ar-
guments of the fieldw or c. Vertices correspond to the factor
Vijs=iskjdis+ksdi j d or Vijs=ikj.
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J1 = 2q2, J2 = − zkq, s47d

and

Sn =
sgS̄dd2m4«

96uv
E

m

` dk

k1+2«E
m

` dq

q1+2«E
−1

1

dj
s1 − j2dq2Jn

k2 + 2kqj + q2,

n = 3¯ 8, s48d

with

J3 = ksk3 + 2k2qj − q3jdF 1

sk2 + kqj + q2dsvk2 + kqj + q2d

+
1

vk2svk2 + kqj + q2d
+

1

k2sk2 + kqj + q2dG , s49d

J4 =
sk3 + 2k2qj − q3jd
ksk2 + kqj + q2d

, s50d

J5 = −
k2fk4 + q4 + kqjsk2 + q2dg

sk2 + q2 + kqjdsk2 + q2 + 2kqjdF 2

k2 + 2kqj + q2

+
1

vsk2 + q2d + ukqj
G , s51d

J6 =
kqjsk2 − q2d

2sk2 + kqj + vq2dS 1

vq2 +
1

k2 + kqj + q2D , s52d

J7 = −
k3s2k3 + 3k2qj − q3jd

2sk2 + 2kqj + q2d H 1

vk2fvsk2 + q2d + ukqjg

+
1

vk2svk2 + kqj + q2d

+
1

sk2 + kqj + q2dsvk2 + kqj + q2dJ , s53d

J8 =
ks2k3 + 3k2qj − q3jd

2sk2 + kqj + q2dfvsk2 + q2d + ukqjg
. s54d

Integralss46d–s54d may be represented as

Si = m4«sgS̄dd2E
m

` dk

k1+2«E
m

` dq

q1+2«E
−1

1

djf isj,k/qd, s55d

or, after the corresponding stretching of integration variables,
as

Si = sgS̄dd2E
t

` dk

k1+2«E
t

` dq

q1+2«E
−1

1

djf isj,k/qd, t ; m/m,

s56d

or, finally, as

Si = sisgS̄dd2t−4«, si ; E
1

` dk

k1+2«E
1

` dq

q1+2«E
−1

1

djf isj,k/qd.

s57d

We are interested in the coefficients of the pole contributions
to Sis«d:

si =
ci

«2 +
bi

«
+ Os«0d,

Si = sgS̄dd2F ci

«2 +
bi − 4cilnt

«
+ Os«0dG . s58d

For the functionsf isz,k/qd with i =2,5¯8 the equations
f isz,0d= f isz,`d=0 hold, revealing that integrals overk andq
in Eq. s55d are separately convergent, so that the divergence
at «→0 in the correspondingSi is brought about by the
region, in whichk andq tend to infinity simultaneously. As a
consequence, the second-order pole is absent in suchSi: ci
=0 for i =2,5¯8.

For Si with i =1,3,4 f isz,`d=0 as before, which means
absence of divergence in the integral overk in Eq. s55d. For
these graphs, however,f isz,0d=constÞ0, so that the integral
overq diverges at«→0 leading to the appearance of the pole
of second order in the full integral.

Expressionss56d may be simplified with the use of the
identity

Si = −
t]tSi

4«
s59d

following from Eq. s57d. Calculating the right-hand side of
Eq. s59d with the aid of relationss56d and introducing the
dimensionless integration variables, we obtain

Si =
t−4«sgS̄dd2

4«
E

1

` dk

k1+2«E
−1

1

djff isj,kd + f isj,1/kdg.

s60d

This operation has reduced the number of iterated integra-
tions and allowed for explicit extraction one pole in«. For
i =2,5¯8, the integral in Eq.s60d is finite for «=0 and
determines the residue of the first-order pole:

ci = 0, bi =
1

4
E

1

` dk

k
E

−1

1

djff isj,kd + f isj,1/kdg,

i = 2,5¯ 8. s61d

For Si with i =1,3,4, thecoefficient of the second-order pole
is obtained by the replacement of the functionff isj ,kd
+ f isj ,1 /kdg in the integrand in Eq.s60d by its limiting value
at k→`: f isj ,`d+ f isj ,0d= f isj ,0d fwe recall that f isz,`d
=0g. Integration overk then becomes trivial, which yields

ci =
1

8
E

−1

1

djf isj,0d, i = 1,3,4. s62d

The remaining integral with the changef isj ,kd→ ff isj ,kd
− f isj ,0dg is finite at «=0 and determines the residue of the
first-order pole:
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bi =
1

4
E

1

` dk

k
E

−1

1

dzff isz,kd + f isz,1/kd − f isz,0dg, i = 1,3,4.

s63d

Let us write conditions43d at orderg2 for d=3. With the use
of the corresponding terms of the one-loop contributions45d,
the summed two-loop contributionss58d and expressions30d
for the renormalization constantZk, we obtain

C

«2 +
B

«
=

1

6«us1 + ud2S̄d

fua11
skd + s2 + uda11

sndgS1

«
− 2 ln tD

+ o
1

8 S ci

«2 +
bi − 4ai ln t

«
D . s64d

With the aid of expressionss46d–s50d ands55d in Eq. s62d, it
is not difficult to find

c1 =
1

72us1 + ud3, c3 =
s3 + ud

480us1 + ud2 ,

c4 =
1

480us1 + ud
, d = 3.

Substituting these values in Eq.s64d and taking into account
relationss30d ands15d for a11

skd anda11
snd, we see that the terms

with ln t in Eq. s64d are automatically canceledsas a conse-
quence of renormalizability of the modeld, whereas for the
coefficientC of the second-order pole we obtain

C = −
3u2 + 9u + 16

720us1 + ud3 .

For the coefficientsbi numerical integration of expres-
sions s61d and s63d with u=u*

s0d from Eq. s31d yields the
results quoted in Table I, which for the coefficientB in Eq.
s64d lead to the value

Bsu*
s0dd = o

i=1

8

bi = − 4.16663 10−3.

Substituting this value in Eq.s33d as well asaw andac from
Eq. s41d andl from Eq. s29d, we obtain the final expression
for the effective inverse Prandtl number:

uef f = u*
s0ds1 − 0.0358«d + Os«2d,

u*
s0d =

Î43/3 − 1

2
. 1.3930, d = 3. s65d

At the physical value«=2, this yields for the turbulent
Prandtl number Prt the result

Prt
s0d . 0.7179, Prt . 0.7693, s66d

in one-loop and two-loop accuracy, respectively.
As seen from Eqs.s65d ands66d, the two-loop correction

to the Prandtl number is small, even for the real value«=2.
This smallness is a consequence of a nearly complete cance-
lation of two large contributions: the term proportional tol
in the brackets of Eq.s33d, determined by the renormaliza-
tion constant of viscosityZn fsee Eq.s27dg, and the term
proportional toB, determined by the renormalization con-
stantZk of the diffusion coefficients30d. Indeed, atd=3, the
second term is equal to −800B/3.1.111, whereas, accord-
ing to s29d, l.−1.101, and thus the whole expression in
brackets is equal tol−800B/3.0.010; i.e., by two orders
smaller than each term separately. Inspection of individual
graphs of Fig. 3 determining the quantityB reveals that the
largest contribution is due to the graphS5, and the corre-
sponding coefficientb5 ssee Table Id is close to the value of
the whole sumB=oi=1

8 bi. Analysis shows thatS5 is the only
graph possessing a singularity atd→2: b5.−1/1024sd−2d.
A similar situation was met in the calculation of the quantity
l in Ref. f1g: the largest contribution was given by a graph
having a pole ind−2. As follows froms28d, the coefficient
of the singular contribution tol is such that as a whole the
two-loop contribution touef f fsee Eq.s33dg turns out to be
finite at d=2. Let us also point out significant compensation
in relation s33d of smaller in magnitude and finite atd=2
contributions in the expressionaw−ac fsee Eq.s41dg.

V. CONCLUSION

In the present problem—as is usual in perturbative field
theoriesf11g—we are dealing with asymptoticssemiconver-
gentd series with the typical factorial growth of the number
of graphs with the order of perturbation theorysthe antici-
pated growth of the number of graphs has been explicitly
demonstrated for the simpler model of passive advection in a
given quenched Gaussian random velocity field in Ref.f12gd.
Semiconvergent series may be and are used for numerical
estimates as long as the magnitude of the correction of each
subsequent order is much less than that of the preceding
order—a property which for such a series is bound to break
down at some order, which, however, is not knowna priori.
The most notable physical demonstration of the usefulness of
semiconvergent series is the quantum electrodynamics. In the
« expansion of critical exponents, different situations have
been met with both small and large corrections to leading-
order valuesf13g.

The main conclusion to be drawn from the two-loop value
of the effective inverse Prandtl numbers65d obtained in the
present paper is that the correction term is strikingly small.
Even at the real value«=2, it is only 7% of the leading

TABLE I. Residues of the first-order poles in« of the dimensionless integralss57d corresponding to the
two-loop graphs of Fig. 3.

i 1 2 3 4 5 6 7 8

bi 3103 0.1099 0.0944 0.8691 0.0057 −3.9382 0.0672 −1.9647 0.5899
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contribution. Apparently, this is the reason for the favorable
comparison of the one-loop value of the turbulent Prandtl
number 0.72f3,4g with the experiment. This result is already
in the range 0.7–0.9 of measured values established quite a
while agof5g. Fairly recent experimental results in circular
turbulent jets emphasize the midpoint of this range: for the
region of approximately constant turbulent Prandtl number,
the value 0.81±0.05 is found in Ref.f6g, whereas in Ref.f7g
a recommended value 0.8 for turbulence modeling in high
Reynolds-number flows is put forward on the basis of the
results in the region of slight variation of the turbulent
Prandtl number in the range 0.7–0.9. In view of these num-
bers, we are inclined to conclude that the already fairly good
one-loop result is improved by the two-loop correction,
whose accounts66d leads to the value 0.77 for the turbulent
Prandtl number.

The obtained result is somewhat unexpected: similar two-
loop corrections to the Kolmogorov constant and the skew-
ness factor are largef1g. When corrections are not small,
knowledge of large-order asymptotic behavior of the series is
required to construct resummation schemes useful for nu-
merical estimates. In the theory ofstaticcritical phenomena,
the instanton approach together with Borel summation
has been widely used to this endf11g. In case of dynamic
models, however, only first steps have been made in this
direction f14g.

The summation used in the calculation of the Kolmogorv
constant in Ref.f2g differs from the traditional Borel sum-

mation in that it is based on an approximate calculation ofall
high-order terms in« expansionsapart from exactly calcu-
lated first twod with the account of the leading terms of their
Laurent expansion ind−2. The success of such a summation
is related to the specific property of the« expansion in the
theory of turbulence: the presence of poles ind−2 in a cer-
tain class of graphs and the significant contribution of these
graphs atd=3. Our two-loop calculation of the Prandtl num-
ber has shown that such graphs exist in this problem as well,
but their poles ind−2 cancel each other, which might an
explanation of the first correction term in the« expansion of
the Prandtl number.

Thus, our results complement the conclusion made in
Refs. f1,2g. In the two-loop approximation the main contri-
bution is due to graphs having a singularity atd=2 and it is
necessary to sum such graphs. For quantities in which this
singularity is absent the two-loop contribution is relatively
small and the results of the usual« expansion appear fairly
reliable at the level of accuracy suggested by the two-loop
correction.
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